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Abstract - The transient two-dimensional laminar natural convection of water, enclosed in rectangular 
cavities with wall temperature maintained at 0°C is studied analytically. This investigation is carried out in 
order to study the inversion of flow patterns caused by the maximum density of water at 4°C. Numerical 
solutions are obtained for cases involving different aspect ratios and initial water temperatures varying 
between 4 and 21°C. Solutions of the governing coupled system ofpartial differential equations are obtained 
using an alternating direction implicit finite difference method. The results are presented graphically in the 
form of stream function and isotherm contour plots. The heat transfer through each wall is evaluated in order 
to study the effect of the density inversion on the cooling process. It is established numerically that one of the 
consequences of the nonlinearity of the water is to change the maximum heat transfer from the top wall of the 

cavity to the bottom one. 
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NOMENCLATURE 

enclosure width; 
physical parameter, gb3/az ; 
aspect ratio of the half cavity; 
body force ; 
acceleration due to gravity; 
Grashof number, Apgb3/v2 ; 
thermal conductivity at T; 
enclosure height ; 
number of horizontal grid spaces ; 
number of vertical grid spaces; 
pressure ; 
Prandtl number ; 
Rayleigh number, Gr Pr ; 
Rayleigh number, Ra Pr modified ; 
temperature of fluid; 
mean temperature of fluid, (Ti + T,,,)/2; 

initial uniform water temperature; 
temperature of enclosure; 
temperature difference, T - T,; 
time ; 
velocities in x1 and x2 directions ; 
dimensionless velocities in X, and XZ 
directions; 
Cartesian coordinates; 
dimensionless Cartesian coordinates. 

Greek symbols 

a, thermal diffusivity; 

B? volumetric coefficient of expansion of 
water; 

A dynamic viscosity at ?; 

v, kinematic viscosity at T; 

PY water density at F; 

P, density as a function of temperature; 

AP, (P - p(W)lP; 

7, dimensionless time; 

&-, 4L, b,,dimensionless average heat transfer at the 
top, side and bottom wall respectively ; 

*t stream function; 

T, dimensionless stream function ; 

0, vorticity ; 

Q, dimensionless vorticity ; 

6 dimensionless temperature; 

01, dimensionless initial water temperature; 
e Wf dimensionless temperature of enclosure. 

Superscript 
* , refers to the pure conduction cases. 

INTRODUCTION 

AN ENCLOSED, rectangular and fluid-filled cavity, 
through which heat is transferred by natural convection, 
is a simplified model of many practical situations and 
has been the subject of many theoretical investigations. 
The first formulation of this problem is due to 
Batchelor [l], although considerable attention had 
been, and is still being given to the analogous problem 
of the so-called BCnard cell [2], viz. convection in a 
fluid confined between two horizontal boundaries. 
Batchelor’s attention was motivated by an interest in 
the thermal insulation which such cavities can provide. 
The first attempt to obtain a numerical solution of the 
relevant equations was made by Poots [3] from 
calculations performed on a desk-machine, but Wilkes 
[4] appears to have been the first to utilize an 
electronic computer. Since then the results of several 
other numerical investigations have been published 
(St%? for instance references [S-lo]); that of Newel and 
Schmidt [ 1 l] contains a comprehensive bibliography. 

In all those previous solutions a linear relationship 
between density and temperature has been assumed, 
such an assumption being acceptable for most fluids. 
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However, in the case of water near its freezing point a 
linear relationship is notjustified. In fact, the density of 

water reaches a maximum value at 3.98”C, thereafter 

decreasing with decreasing temperature. It results 

from this nonlinearity that convective motion in water 

behaves in a rather peculiar manner when the tempera- 
ture domain encompasses the 3.98”C point, for the 

density of water is a maximum at this temperature. 

For recent literature on the effects of maximum 

density on free convection phenomenon, one may cite 

the works by Vanier and Tien [12, 131, Vasseur and 

Robillard [14] and Goren [15] who studied free 

convection about an isothermal vertical flat plate 

adjacent to a mass of cold water. Free convective heat 
transfer of a horizontal layer of maximum density 

liquid has been studied by Yen and Gorin [16], Adrian 

[17], Forbes and Cooper [18], Sugawara et al. [19] 
while Schenk and Schenkels [20], Yen and Galea [21] 

and Boger and Westwater [22] have published results 
concerning free convection induced by melting ice in 
cold water. 

Concerning the effects of maximum density on 

convective motion of enclosed fluids, experimental 

work on the cooling of quiescent water in a pipe has 

been performed by Gilpin [23,24] and Seki et ul. [25] 

while a numerical solution to this problem has been 

presented by Cheng and Takeuchi [26]. The con- 
vective motion and heat transfer inside a rectangular 

cavity with vertical walls maintained at constant but 

different temperatures has been studied by Watson [27], 

Desai and Forbes [28] and Robillard and Vasseur 

[29]. In all these studies it was found that the effect of 

density inversion on the flow patterns, temperature 
profiles and average Nusselt number was unexpectedly 

large. 

FORMULATION OF THE PROBLEM 

The problem to be considered is the motion and heat 

transfer which occurs when a mass of water, contained 
in a cavity, is cooled to near freezing. Initially the water 

is assumed to be at a uniform temperature T and then 
the walls of the cavity are subjected to a constant 

temperature T, = 0°C. Specifically, attention will be 
given to a rectangular cavity of depth 1 and width 2b, 

the aspect ratio of the half cavity being denoted by E 
= l/b. 

It is supposed that the cavity is sufficiently long in 
the direction normal to the plane of the cavity for the 
motion to be assumed to be two-dimensional. It is also 
assumed that the motion is laminar. Experimental 
evidence (e.g. [30] and [31]) indicates that this assump- 
tion is valid provided the Rayleigh number based on 

cavity height is less than about 10’. In the following 
analysis it is assumed that (7; - T,) is sufficiently small 
so that the Boussinesq approximation may be made, 
which neglects density variation in inertial terms of the 
equation of motion but retains it in the buoyancy term 
of the vertical equation. Water properties, with the 
exception of density in the buoyancy term, are as- 

sumed constant and are evaluated at the mean tem- 
perature T= (7; + T,)/2. It is further assumed that all 

other relevant thermodynamic and transport proper- 

ties are independent of temperature, and that com- 

pressibility and dissipation effects are negligible. 

The equations expressing conservation of momen- 

tum, energy and mass are then: 

(3) 

where Fi = (-g,O). The coordinates are so taken that 

xi is opposite to the direction of gravitational force. 
Consistent with the previous assumptions, the den- 

sity temperature relationship within the interested 

temperature range is assumed to be of the form: 

The subscript ‘0’ in (4) denotes a reference state 

(usually at 0°C). 

The pressure p is divided into two parts: 

p = pl + p* (5) 

where p” is the deviation from original pressure p’. 
Differentiating (5) with respect to xi, substituting 

into (1) and taking the curl of the resulting equation, in 

order to eliminate the pressure term, yields for the two- 

dimensional motion under consideration : 

in which o is the vorticity defined by: 

(7) 

where $ is the stream function such that: 

a* d+ 
u,=--- and u2=- -. 

8% ?X, 
(8) 

It is noted that the equation of continuity is 
identically satisfied by the introduction of the stream 
function. 

To make the governing equations dimensionless, the 
dimensionless time, velocities, distances, temperature, 
stream function and vorticity are defined as follows: 



AP = @ - N))/P V==-g. 
1 J 

Substituting (9) into (2), (6) to (8) and making use of 
(4) gives : 

Motion 

Energy 

Vorticity 

Velocities 

DR 
- = BadP + PrVQ. 
Dr 8X2 

DB 
- = v2e. 
Dr 

fl= -v2q. 

u, =g, u =_zY 
2 

2 ax, ’ 

where Pr = v/a is the Prandtl number, and B = 
(gb3/a2), a physical parameter related to the size of 
the cavity. 

tween density and temperature. However for the case 

(10) of convection with an inversion density effect it was 
observed that the vorticity equation exhibited a boun- 
dary induced instability at relative low AT. The same 
situation has been encountered in the past by Samuel 

(11) 
in his study on the stability of a layer of fluid heated 
from below [34]. As shown by this author this type of 
problem may be solved by using a lower order 
approximation for the vorticity on the boundary. 

(12) In order to check the validity of the present numeri- 
cal method, comparisons have been made with other 
existing solutions. For low Rayleigh numbers (- 104), 

(13) 
an excellent agreement was observed with the analyti- 
cal Poots’ solution [3] for a square cavity. For higher 
Rayleigh numbers, (- 106), the numerical results from 
Wilkes [4], for the case of heat transfer into a 
rectangular cavity, were integrally reproduced. 

The initial conditions are : Effect of mesh size 

t=O ui=o The determination of an acceptable mesh size is of 
prime importance since the greater computational 
accuracy obtainable with larger values of N and M 

R =o 0 < x2 < 1.0 must be balanced against computer time. The calcu- 
lations were carried out using a 20 x 20 mesh ; i.e. the 

8 =l cell size was b/20 and l/20. Rubel and Landis [8] 

and boundary conditions for 7 > 0 showed that the use of a finer mesh made relatively 

Xl = 0 : P = 0, U, = U2 = 0 and 0 
little difference to the final results. It was found by 

= 8, Wilkes [4] that the use of a 10 x 10 grid gives results 

Xl =E : y=O, U, = U2 =O and 0 =& remarkably close to that of a 20 x 20 grid, a 15 % 
difference in the heat transfer at walls between the two 
being however observed. x, = 0 :q=O, U2=R =O and g=O 

2 

X2=1.0:\ij=0, U,=U2=0 and 6 =e,,, 

(14) 

in which use has been made of the symmetry of the 
problem with respect to a vertical plane passing 
through X2 = 0. In view of the complex nature of the 
problem, a numerical solution appears to be the only 
approach for the present problem. 

NUMERICAL SOLUTION OF THE EQUATION 

Finite di$erence formulation 
In the present study a rectangular mesh system with 

spacing AX, = E/M,, AX2 = I/N, is employed in the 
finite difference formulation of the governing equa- 
tions and the appropriate boundary conditions. An 
implicit alternating direction (ADI) method is adopted 
for the finite difference solution of the parabolic type 
equations (10) and (11) and an iterative method [32] is 
used for the elliptic equation (12). 

P -l = p,‘(l + BrT+ BzT2 + /93T3 + 84T4) (15) 

where: p. = 0.9998396 (gcmm3); 
/!I, = -0.678964520 x 1O-4 (I/C); 
/I2 = 0.907294338 x 1O-5 (1/“C2); 
p3 = -0.964568125 x 10m7 (1/“C3) and 
/!14 = 0.873702983 x 1O-9 (1/“C4). 

Fujii [35] notes that the foregoing expression agrees 
with the tabulated data of Landolt-Bornstein [36] 
with an error of less than one unit at the last digit. 

RESULTS AND DISCUSSION 

The results are more meaningful if presented in the 
form of transient streamlines and isotherms. Stream- 
lines are important as they give an immediate picture 
of the flow pattern in the enclosure. Isotherms are also 

Boundary conditions on q and 6 are applied in the important as they indicate the density distribution 

usual manner, using central differences, when it is 
possible, and image points for derivative conditions. 
Vorticity boundary conditions were first obtained 
using the method introduced by Gosman et al. [33]. 
The results obtained with this approximation were 
excellent for fluids having a linear relationship be- 

Density-temperature relationship 
The temperature dependent density for water in 

equation (4) can be approximated by the following 
equation for the temperature range 0 u 20°C: 

Transient natural convection heat transfer 1197 
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Table 1. Physical parameters 
---._-_- ____~. ~_ ~- 

Case F L gb’la2 E 
.._-, 

1 lo” 0” 5.32 x lOa 2 
2 10” 0” 5.32 x 10’ 6 
3 4” 0” 1.80 x lo9 2 
4 10 0” 1.80 x lo9 2 
5 8” 0” 1 X-J x io9 2 
6 10” 0” 6.65x 10: ’ 
7 lo’ 0” 5.32 x 108 ;1 
8 21’ 20 4.79 X 108 2 

.- _... ~._ _ ̂ II_ 

inside the Bow field. Specifically, the 4°C isotherm, 
when superposed to the streamline pattern, will give 
the location of the maximum density. This particular 
isotherm, when it exists, is shown as a heavy dashed 
line on the plots of the streamlines as well as on the 
isotherm plots. 

To expedite plotting of the results, an auxiliary 
computer program was written to locate points lying 
on specified isotherms and streamlines. As mentioned 
earlier the problem under consideration is symmetrical 
and it was found advantageous to reproduce 
computer results at a given time on a single graph with 
the flow pattern on the right half of the cavity and the 
isotherms on the left half. 

Consideration will be given first to case 1 of Table 1 
which corresponds to a square cavity (E = 2) with 
initial water temperature T = 10°C and wall tempera- 
ture maintained continuously at T, = 0% this case 
providing rather typical and interesting results. The 

Prandtl number Pr is taken to be 11.6, corresponding 
to the average temperature 5°C. The computed results 
for the mean temperature HIW, the center point tem- 
perature Or, the maximum temperature tl,,,,, the heat 
transfer &, +B and 4L related to the top, lower and 
lateral boundaries respectively are shown in Fig. 1 a:, 
functions of the dimensionless time z. The corresponci- 

ing curves for pureconduction have been also included 
in this graph for comparison purpose. In the case of 
pure conduction the heat transfer is the same for all the 
boundaries and is denoted by $*, all other variables 
with the superscript (*) also referring to the pure 
conduction. It is noted that the mean temperature f& is 
proportional to the heat in excess of 8,, remaining in 
the cavity at time z. Its slope is directly related to the 
heat transfer at the boundaries by the following 
expression : 

The difference between the pure conduction curve @$, 
and the actual 8,M curve is proportional to the ad- 
ditional heat transfer through the boundaries, attri- 
buted exclusively to convection that has occurred from 
the initiation of the cooling process to the time 
considered. It is seen that, due to the fluid circulation 
inside the cavity, the upper and lower boundary heat 
transfers & and (bR take values quite different from 
that of the pure conduction heat transfer 4*. It is also 
noticed that the heat transfer 4L on the vertical wall IS 
less affected by convection and consequently follows 

FIG. 1. Transient distributions for &, &, H,,,, &, $L and & with results from pure conduction for case 1. 
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more closely the pure conduction heat transfer curve 
and stays approximately at a mean value between & 
and &,. 

Typical sets of the resulting streamlines and iso- 
therms corresponding to different times 7 are shown in 
Fig. 2. The maximum and minimum values of the 
stream function and the contour intervals AT for each 
graph are given in Table 2. It should be noted that for 
this type of problem, the boundaries of the cavity 
always correspond to the T, isotherm. Figure 3 gives 

(a) 

(bl (dl 

(a) the velocity profiles Ur along the horizontal 
centerline passing through X1 = 0.5, (b) the velocity 
profiles U2 along a vertical centerline located at the 
position X, = 0.5 and (c) the transient temperature 
profiles along the horizontal centerline already men- 
tioned. The symbols A, B, C, etc. shown in Figs. 1 and 3 
correspond to the sequence of the transient streamline 
patterns and isotherms of Fig. 2. Those figures may 
thus be contrasted with each other to gain some insight 
into the flow and temperature fields. 

T = 0.060 

FIG. 2(a-d). 
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T = 0.090 

r=0.110 

( 

r 

7=0.l30 

h) 

T =O.ZOl 
FIG. 2(e-h). 

FIG. 2. Transient streamline pattern and isotherms for case 1 

At the very beginning of the cooling process, heat which only shows the right clockwise vortex. It is seen 

transfer is dominated by conduction. A motion of the on Fig. 3c that the temperature profile A still reveals 

boundary layer type is first set up near the walls, this thermal boundary layer characteristics whereas the 

movement gradually extending inside the cavity. At velocity profile (curve A of Fig. 3a) shows an important 

the end of what might be called an initial regime, that gradient near the side boundary~ this gradient being a 

is, approximately at point A in Figs. 1 and 3 (7 N O.Ol), remnant of the initial boundary layer already men- 

motion has become important over the entire cavity. tioned. It results from the motion shown on Fig. 2a 

Two counter rotating vortices are then present in the that the cooler water is transported downward while 

whole enclosure, as it can be deduced from Fig. 2a the warmer water in the core region is transported 
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Table 2. Maximum and minimum values of stream functions and 
maximum dimensionless temperatures for cases 1 and 2 

2a 
2b 

:: 
2e 
2f 
2g 
2h 

4a 0.05 37.00 - 8.50 4.50 0.99 
4b 0.10 18.00 - 17.00 3.50 0.87 
4c 0.15 9.00 - 21.00 3.00 0.73 
4d 0.30 0.00 - 13.00 1.30 0.40 

0.01 27.00 - 0.02 2.70 1.00 
0.03 21.00 - 0.90 3.00 0.99 
0.06 8.90 - 9.20 1.80 0.86 
0.07 6.90 - 5.40 1.20 0.80 
0.09 3.00 -7.40 1.04 0.70 
0.11 0.25 - 8.40 0.86 0.64 
0.13 0.00 - 9.20 0.92 0.59 
0.20 0.00 - 6.40 0.64 0.35 

0 

“J 

-25 

FIG. 3. Transient velocity profiles (a, b) and temperature profiles (c) for case 1. 
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upward. Thus, as shown in Fig. 2b a large part of the 
body of water has become thermally stratified with the 

isotherms sparsely spaced near the bottom wall and 
closely spaced near the top one. This configuration 

indicates qualitatively that the local heat transfer is 

higher at the top wall than at the bottom one. 

Quantitatively the values of these local wall heat fluxes 

are given on Fig. 1 by the curves $J~, bfg and #,, at 

location B. At this stage of the cooling process it is of 

interest to go back to the isotherm field shown in the 

left half on Fig. 2a. It is noted that at the bottom of the 

cavity, in the layer of fluid included between the 4°C 

isotherm and the O‘C bottom boundary, the buoyancy 

force changes sign and the flow field is potentially 

unstable because of the top-heavy situation similar to 
the well-known case with heating from below [?4]. 
Thus, the intensity of flow near the bottom remains 

rather weak until the vertical density gradient becomes 
sufficiently large. This unstable layer then grows and 

an additional pair of vortices rotating opposite to the 

existing earlier one appears, marking the beginning of 

the inversion process. The resulting flow pattern is 
depicted on Fig. 2b. 

With the progression of the cooling process, the 

lower vortex appearing on the right half of Fig. 2b 

gradually increases its intensity and displaces the 

upper vortex (see sketches c, d, e and f of Fig. 2). The 

cooler water located near the vertical wall and between 

the two counter rotating vortices is carried directly 

into the core region and disturbs locally the flow field 

as it can be observed by the distortion of the isotherms 

(see for instance curve E, Fig. Xc). Furthermore, due to 
the combined action of the counter”rotating vortices, 

some of the warmer core water is carried downward in 
the lower portion of the cavity. It results from this 

motion that the heat transfer rate at the lower wall 4B 

improves subsequently as shown in Fig. 1. At the time 

step z 2 0.1, the curves & and #Jo cross each other and 

the heat transfer rate dR on the lower wall becomes 

greater than & and OIL. 
At 7 = 0.110 Fig. Zf shows that the original clock- 

wise vortex has almost completely been engulfed by 
the already strong vortex grown from below. The 
original clockwise circulation is completely reversed in 

Fig. 2g indicating that the ffow field inversion process 
has come to an end. In Fig. 2h it is seen that the 

relatively warm core has moved in the lower region 
and that the stratification of the water is now charac- 

terized by weak gradients at the top of the cavity and 
strong gradients at the bottom. Thus the temperature 

field also shows characteristics opposite to its earlier 
stages (see Fig. 2b). It is of interest to note that the 

vortex motion at the beginning (Fig. 2a) and at the end 
of the cooling process (Fig. 2h) although opposite in 
direction are similar in character (see also Fig. 3a and 
b). Results obtained foe higher values of 7 (not 
presented here) show that the momentum of the eddy 
motion is slowly dissipated by the opposing viscous 
forces and that the fluid motion becomes more and 

more minute. 

In addition to the two most signiticant vortices 
already discussed, some other eddies of very small 
intensity are also present in the corners of the half 
cavity (see Fig. 2d). It is true that the existence rtf 

artificial corner cells, caused by numerical compu. 
tation, has been reported in the past rn literature [8] 

However, the size of the grid mesh used in the present 

computation has been chosen in order to avoid tht~ 

problem. 

The effect ofthe cavity size b on the Row pattern ano 

the heat transfer has been studied numerically (cases 1. 
4 and 6 of Table 1). The numerical values obtained are 

not reported graphically here but the general trend of 
these results will be discussed. It was found that for 

fixed values of T, and ‘& an increase of ihe physical 

parameter gh3/u2 (which corresponds to an increase of 
the cavity size 6) strengthens the convection of the 

flow, and consequently the overall heat transfer, at the 

early stages of the cooling process. thus wirh !r 

increasing, the heat transfer curves iJjT and aB move 

away from the pure conduction heat transfer curve $* 
It is also observed that when gh”,~’ is increased, rhe 

difference (0:; - O,,,) becomes more important. t,ur., 

thermore it is observed that the crossing of the (~XCI 

curves & and #a, which is a consequence i.,f Ihe 
inversion of the circulation inside the cavity. MXIII“; 

earlier. For the largest value L&’ .x’ used in :ht: 

~~~mputatjon (case 4). the curve c/)~ is characterrzed bi 

a sudden increase that occurs shortly after the :II.. 

itiation of the cooling process and that iasts i;>r .L 
relatively short period of time. This bump of the cur:-e 

& has the tendency to develop into a sharp peak when 

the value of&“/a2 is further increased. Such behavior 

may be explained in the foliowing way. At the vzr’v 
beginning of the cooling process. only conduction is 

present and the curves (pB, r& and &:, originate from 

the same values. When fluid motion develops. tharae 

curves separate one from the orher, heat being tram- 
ported toward the top boundary through the action uf 

gravity forces. If fluid motion is strong enough, warmer 
fluid may take the place ofcooler Ruid in the vicinity of 

the top boundary. For such situations this means that 
the cooling by conduction become% ‘E slower prtjccss 
than the supply of heat by i:onvection. in th~sc 
conditions the heat transfer ma\, increase cira?;tieati> 
through a given boundary. A smilar effect has been 
observed for the lower boundary heat transfer g51i when 

the temperature range is between ,4 :md o’(‘ 
The influence of the aspect ratics i”: on the preseni 

problem has been studied in cavities with E -= 4 and E 
= 6 (cases 2 and 7, of Table 1). Figure 4 presents the 
flow patterns and isotherms for the case E =- 6. II is 
noticed that the general features remain similar to 
those of the square cavity (E = 2) However lt was 

observed from numerical results. not presented here, 
that when E is increased the inversion process requires 
a longer period of time to be accomplished. The 
growing and the spreading of the counter clockwise 
vortex in the entire cavity appears to be ii 510wer 

process than in the case of a square cavil). 
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(a (bl 

(d) 

FIG. 4. Transient streamline pattern and isotherms for case 2 

N.M.T. 23/9---c 
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CONCLUSIONS 

The results obtained in the present study can be 

summarized as follows : 
14. 

1. Convective heat transfer is greatly influenced by 
the presence of density rnaxinlLlrn in the convective 

15 

fluid. 16. 
2. When the temperature corresponding to the 

maximum density is between 7; and T,, the flow 

pattern and temperature field which start in a way ” 
comparable to linear free convection tend to a final 18. 
state which corresponds to a completely reversed 

situation in all aspects. 
3. By comparison to equivalent situations in the 19 

linear range of temperature, it can be deduced that the 
change in rotation affecting the convective cells retards 20. 
the cooling process of the cavity. 
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CONVECTION THERMIQUE NATURELLE VARIABLE DANS UNE MASSE 
D’EAU REFROIDIE AUTOUR DE 4°C 

R&sum&-On etudie th~oriquement la convection naturelle iaminaire, bidimensionnelle, variable pour l’eau 
confinee dans une cavite rectangulaire, avec une paroi maintenue a 0°C. Cette etude est menee de faGon a 
Ctudier l’inversion des configurations d’ecoulement cat&e par le maximum de densite a 4°C. Des solutions 
numeriques sont obtenues pour differents rapports d’allongement et differentes temperatures initiales d’eau 
entre 4°C et 21°C. 

Les solutions des equations aux derivees partielles sont obtenues en utilisant la mtthode impficite aux 
differences tinies avec direction altern& Les resultats sont present.% graphiquement sous la forme de lignes 
de courant et de lignes isothermes. Le transfert thermique est Cvalue sur chaque paroi pour ttudier I'influence 
de I'inversion sur le processus de transfert. I1 est etabh numeriquement que l’effet est de changer le transfert 

maximal de la paroi suptrieure de la caviti, vers la paroi inferieure. 

W~RMEtiBERTRAGUNG DURCH FREIE KONVEKTION IN EINER UNTER 
4°C ABGEK~HLTEN WASSERMASSE 

Zusammenfassung-Die instationiire, zweidimensionale, laminare freie Konvektion von Wasser, das in 
rechteckigen Hohlrlumen mit auf 0°C gehaltenen Wandtemperaturen eingeschlossen ist, wird analytisch 
untersucht. Diese Arbeit wird durchgefiihrt, urn die Inversion der Stromungsverliiufe, die vom Dichtemaxi- 
mum des Wassers bei 4°C herriihrt, zu untersuchen. Es werden numerische Losungen fib F&he, die 
verschiedene Seitenverh&ltnisse und zwischen 4°C und 21°C variierende Wasseranfangstem~raturen 
umfassen, erhalten. Die Losungen des ~schreibenden gekoppelten Systems von partiellen Differentialglei- 
chungen werden erhalten, indem eine richtungs-alternier~de, implizite, endliche Differenzenmethode 
benutzt wird. Die Ergebnisse sind grafisch in Stromfunktions- und Isothermen-Kurvenscharen dargestellt. 
Die Warmetibertragung durch jede Wand wird bestimmt, urn den Einflul3 der Dichteinversion auf den 
Abkiihlvorgang zu untersuchen. Es wird numerisch untermauert, daB eine der Konsequenzen der 
Nichtlinearitat von Wasser die ist, dal3 sich das Maximum der Wiirmeiibertragung von der oberen 

Behllterwand zu der unteren verlagert. 

TEI-IJIOI-IEPEHOC IIPM HECTAHHOHAPHOH ECTECTBEHHOH KOHBEKHHH 
B OE’bEME BOflbI, OXJIAxflEHHOfi HA)KE 4 C 

huioTamui-- AHa~~T~qecK~ Hccne~o~~acb H~TauHoHapBaB nByb9epaa.s ~aM~apHaa ecTecTBeHuas 

KOHBeK~~~ B O&eMaX BOJW, ~OMe~eHH~ B np~MOyrO~bH~e 3aMKHYTMe EOJIOCTW C TeMRepaTypOii 

CTeHOK,~BHOii 0“c. QeJIbIO HCCJleXOBaHHR IIBJlXJlOCb K+ieHiieCTpyKTyp Te'IeHWi, BbI3BaHHbiX MaKCK- 

MaJlbHOii nJ'IOTHOCTbf0 BOLtbI npH 4’C. nOJIy’leHhI WCJleHHbIe peIIIeHWl JIJIR pa3JlWlHblX OTHOUIeHbifi 

CT~~OH nonocTeii H ttaVanbHbtx TeMnepaTyp Bow B ntiana30He 0~ 4 ‘C a0 21 'C. 
C nOMOLIJbM KOHe’iHO-Pa3HOCTHOTO HellBHOrO MeTOJ,a nepeMeHHbIX HanpaBneHHii nO,,yVeHbI 

peIUeHHI CHCTeMbI JWi&$e~HuStaJlbHbiX yPaBHeHHk B YaCTHblX npOH3BOJlHbIX. Pe3yflbTaTbl nPeA- 

cTaBneBH B rpa@f~ec~o~ BHne. Aatfa 0ueHxa BenwiwtbI TennoBoro noToKa gepes Kagnyro crewy 

C IIeJtbIO OR~fIeJIeHHIi Bn~~HH~ UHBepCHB IIJIOTHOCTH Ha IlpOUeCC O~~a~~e~UK. B @%yRbTaTe 

YNCJleHHbIX PaC’ieTOB YC-raHOBjreHO, YTO H3-3a Hen~e~H~T~ BOLW nj?OHCXOJIWT CMellfeHSie MaKCHM,‘Ma 

TennooBMeiia c Bepxfiefi c-remii nonocTa K winmeii. 


