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Abstract — The transient two-dimensional laminar natural convection of water, enclosed in rectangular
cavities with wall temperature maintained at 0°C is studied analytically. This investigation is carried out in
order to study the inversion of flow patterns caused by the maximum density of water at 4°C. Numerical
solutions are obtained for cases involving different aspect ratios and initial water temperatures varying
between 4 and 21°C. Solutions of the governing coupled system of partial differential equations are obtained
using an alternating direction implicit finite difference method. The results are presented graphically in the
form of stream function and isotherm contour plots. The heat transfer through each wall is evaluated in order
to study the effect of the density inversion on the cooling process. It is established numerically that one of the
consequences of the nonlinearity of the water is to change the maximum heat transfer from the top wall of the
cavity to the bottom one.

NOMENCLATURE
b, enclosure width;
B, physical parameter, gb%/a?;
E, aspect ratio of the half cavity;
F, body force;
d, acceleration due to gravity;
Gr, Grashof number, Apgb®/v?;
k, thermal conductivity at T ;
l, enclosure height;
N, number of horizontal grid spaces;
M, number of vertical grid spaces;
D, pressure;
Pr, Prandtl number;
Ra, Rayleigh number, GrPr;
Ra, Rayleigh number, Ra Pr modified;
T, temperature of fluid;
T mean temperature of fluid, (T; + T,,)/2;
T;, initial uniform water temperature;
T,, temperature of enclosure ;
AT, temperature difference, T; — T,,;
t, time;
Uy, Uy, velocities in x; and x, directions;
U,,U,, dimensionless velocities in X, and X,
directions;
X;,X,,  cartesian coordinates,
X,,X,, dimensionless cartesian coordinates.
Greek symbols
o, thermal diffusivity;
B, volumetric coefficient of expansion of
water;
U, dynamic viscosity at T;
v, kinematic viscosity at T';
2, water density at T';
2, density as a function of temperature;
Ap, (P — p(6))/P;
T, dimensionless time;

¢, b1, ¢ dimensionless average heat transfer at the
top, side and bottom wall respectively;

v, stream function;

P, dimensionless stream function;

w, vorticity ;

Q, dimensionless vorticity ;

0, dimensionless temperature;

0, dimensionless initial water temperature;
9., dimensionless temperature of enclosure.

Superscript
* refers to the pure conduction cases.

INTRODUCTION

AN ENCLOSED, rectangular and fluid-filled cavity,
through which heat is transferred by natural convection,
is a simplified model of many practical situations and
has been the subject of many theoretical investigations.
The first formulation of this problem is due to
Batchelor [1], although considerable attention had
been, and is still being given to the analogous problem
of the so-called Bénard cell [2], viz. convection in a
fluid confined between two horizontal boundaries.
Batchelor’s attention was motivated by an interest in
the thermal insulation which such cavities can provide.
The first attempt to obtain a numerical solution of the
relevant equations was made by Poots [3] from
calculations performed on a desk-machine, but Wilkes
[4] appears to have been the first to utilize an
electronic computer. Since then the resuits of several
other numerical investigations have been published
(see for instance references [5-10]); that of Newel and
Schmidt [11] contains a comprehensive bibliography.

In all those previous solutions a linear relationship
between density and temperature has been assumed,
such an assumption being acceptable for most fluids.
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However, in the case of water near its freezing point a
linear relationship is not justified. In fact, the density of
water reaches a maximum value at 3.98°C, thereafter
decreasing with decreasing temperature. It results
from this nonlinearity that convective motion in water
behavesin a rather peculiar manner when the tempera-
ture domain encompasses the 3.98°C point, for the
density of water is a maximum at this temperature.

For recent literature on the effects of maximum
density on free convection phenomenon, one may cite
the works by Vanier and Tien [12, 13], Vasseur and
Robillard [14] and Goren [15] who studied free
convection about an isothermal vertical flat plate
adjacent to a mass of cold water. Free convective heat
transfer of a horizontal layer of maximum density
liquid has been studied by Yen and Gorin [16], Adrian
[17], Forbes and Cooper [18], Sugawara et al. [19]
while Schenk and Schenkels [20], Yen and Galea [21]
and Boger and Westwater [22] have published results
concerning free convection induced by melting ice in
cold water.

Concerning the effects of maximum density on
convective motion of enclosed fluids, experimental
work on the cooling of quiescent water in a pipe has
been performed by Gilpin [23, 24] and Seki ef al. [25]
while a numerical solution to this problem has been
presented by Cheng and Takeuchi [26]. The con-
vective motion and heat transfer inside a rectangular
cavity with vertical walls maintained at constant but
different temperatures has been studied by Watson [27],
Desai and Forbes [28] and Robillard and Vasseur
[29]. In all these studies it was found that the effect of
density inversion on the flow patterns, temperature
profiles and average Nusselt number was unexpectedly
large.

FORMULATION OF THE PROBLEM

The problem to be considered is the motion and heat
transfer which occurs when a mass of water, contained
in a cavity, is cooled to near freezing. Initially the water
is assumed to be at a uniform temperature 7; and then
the walls of the cavity are subjected to a constant
temperature T, = 0°C. Specifically, attention will be
given to a rectangular cavity of depth / and width 2b,
the aspect ratio of the half cavity being denoted by E
= I/b.

It is supposed that the cavity is sufficiently long in
the direction normal to the plane of the cavity for the
motion to be assumed to be two-dimensional. It is also
assumed that the motion is [aminar. Experimental
evidence (e.g. [ 30] and [31]) indicates that this assump-
tion is valid provided the Rayleigh number based on
cavity height is less than about 10%. In the following
analysisitisassumed that (T; — T,,)is sufficiently small
so that the Boussinesq approximation may be made,
which neglects density variation in inertial terms of the
equation of motion but retains it in the buoyancy term
of the vertical equation. Water properties, with the
exception of density in the buoyancy term, are as-
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sumed constant and are evaluated at the mean tem-
perature T= (T, + T,)/2. It is further assumed that all
other relevant thermodynamic and transport proper-
ties are independent of temperature, and that com-
pressibility and dissipation effects are negligible.

The equations expressing conservation of momen-
tum, energy and mass are then:

_Du; — W(T)F ap &u, (0
P T ok T Mo, '
DT AT 2)
SV
Dt 0x;0x
My (3)
ox;

where F; = (—g,0). The coordinates are so taken that
x, is opposite to the direction of gravitational force.
Consistent with the previous assumptions, the den-
sity temperature relationship within the interested
temperature range is assumed to be of the form:

-,
p  Ty=ps' {1+ 3 /f,-T"]‘- (4)
i=1 i

The subscript ‘0" in (4) denotes a reference state
(usually at 0°C).
The pressure p is divided into two parts:
p=p+p (5)
where p” is the deviation from original pressure p'.
Differentiating (5) with respect to x;, substituting
into (1) and taking the curl of the resulting equation, in

order to eliminate the pressure term, yields for the two-
dimensional motion under consideration:

Do I5) o — p(T)
D ax [(T)g] *

in which w is the vorticity defined by:

Vo (6)

A
0x,;0x;

al
W= — »—EI“ : (7
dx;0x;
where  is the stream function such that:
oy oy )
Uy =— and wu, = —~—. &)
1 ox, 2 ax, (8)

It is noted that the equation of continuity 1s
identically satisfied by the introduction of the stream
function.

To make the governing equations dimensionless, the
dimensionless time, velocities, distances, temperature,
stream function and vorticity are defined as follows:

at _ub ¥ - X;
Tl Yo b
9
T-T, _ b?
A A
T, — T, o &
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&)
oX;0X;
Substituting (9) into (2), (6) to (8) and making use of
(4) gives:

Ap=(p—-pO)p V

Motion
DQ 0Ap
—— = B—— + Prv3Q. 10
Dr ox, (10)
Energy
Dé
— =V 11
De (11)
Vorticity
Q= -V¥ (12)
Velocities
P oY
U, =—, Uy= ——o, 13
7o, 2 aX, (13)
where Pr = v/a is the Prandtl number, and B =
(gb%/«?), a physical parameter related to the size of
the cavity.
The initial conditions are:
t=0 U;=0

I

for 0<X,

0 E
0 0< X, < 1.
1

N A

0

< 0 &
I

il

and boundary conditions for t > 0

X,=0 :¥=0, U;=U,=0 and 6§ =4,

X,=E :9=0, U;j=U,=0 and § =46,

X,=0 :¥P=0, U;=Q =0 and ﬂ=0
X,

X,=10:¥=0, Uj=U,=0 and 8§ =4,

(14

in which use has been made of the symmetry of the
problem with respect to a vertical plane passing
through X, = 0. In view of the complex nature of the
problem, a numerical solution appears to be the only
approach for the present problem.

NUMERICAL SOLUTION OF THE EQUATION

Finite difference formulation

In the present study a rectangular mesh system with
spacing AX, = E/M,,AX, = 1/N,is employed in the
finite difference formulation of the governing equa-
tions and the appropriate boundary conditions. An
implicit alternating direction (ADI) method is adopted
for the finite difference solution of the parabolic type
equations (10)and (11) and an iterative method [32] is
used for the elliptic equation (12).

Boundary conditions on ¥ and 8 are applied in the
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usual manner, using central differences, when it is
possible, and image points for derivative conditions.
Vorticity boundary conditions were first obtained
using the method introduced by Gosman et al. [33].
The results obtained with this approximation were
excellent for fluids having a linear relationship be-
tween density and temperature. However for the case
of convection with an inversion density effect it was
observed that the vorticity equation exhibited a boun-
dary induced instability at relative low At. The same
situation has been encountered in the past by Samuel
in his study on the stability of a layer of fluid heated
from below [34]. As shown by this author this type of
problem may be solved by using a lower order
approximation for the vorticity on the boundary.

In order to check the validity of the present numeri-
cal method, comparisons have been made with other
existing solutions. For low Rayleigh numbers (~ 10%),
an excellent agreement was observed with the analyti-
cal Poots’ solution [3] for a square cavity. For higher
Rayleigh numbers, (~ 10%), the numerical results from
Wilkes [4], for the case of heat transfer into a
rectangular cavity, were integrally reproduced.

Effect of mesh size

The determination of an acceptable mesh size is of
prime importance since the greater computational
accuracy obtainable with larger values of N and M
must be balanced against computer time. The calcu-
lations were carried out using a 20 x 20 mesh ; i.e. the
cell size was b/20 and 1/20. Rubel and Landis [8]
showed that the use of a finer mesh made relatively
little difference to the final results. It was found by
Wilkes [4] that the use of a 10 x 10 grid gives results
remarkably close to that of a 20 x 20 grid, a 159
difference in the heat transfer at walls between the two-
being however observed.

Density—temperature relationship

The temperature dependent density for water in
equation (4) can be approximated by the following
equation for the temperature range 0 ~ 20°C:

pl=p5 1+ BT+ B, T? + B3T3 + B, T

where: py = 0.9998396 (gcm~?);

B = —0.678964520 x 10~* (1/°C);

B, = 0.907294338 x 107 (1/°C?);

B3 = —0.964568125 x 10~7 (1/°C?) and

B4 = 0.873702983 x 107° (1/°C*).

Fujii [35] notes that the foregoing expression agrees

with the tabulated data of Landolt-Bornstein [36]
with an error of less than one unit at the last digit.

(15)

RESULTS AND DISCUSSION

The results are more meaningful if presented in the
form of transient streamlines and isotherms. Stream-
lines are important as they give an immediate picture
of the flow pattern in the enclosure. Isotherms are also
important as they indicate the density distribution
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Table 1. Physical parameters

Case T; T. gb%/e? E
1 10° 0° 532 % 10® 2
2 10° 0° 532 x 10% 6
3 40 0° 1.80 x 10° 2
4 10° 0° 1.80 x 10° 2
5 8° 0° 1.80 x 10° 2
6 10° 0° 6.65x107 2
7 10° 0° 532 %108 4
8 21° 20° 4.79 x 10% 2

inside the flow field. Specifically, the 4°C isotherm,
when superposed to the streamline pattern, will give
the location of the maximum density. This particular
isotherm, when it exists, is shown as a heavy dashed
line on the plots of the streamlines as well as on the
isotherm plots.

To expedite plotting of the results, an auxiliary
computer program was written to locate points lying
on specified isotherms and streamlines. As mentioned
earlier the problem under consideration is symmetrical
and it was found advantageous to reproduce
computer results at a given time on a single graph with
the flow pattern on the right half of the cavity and the
isotherms on the left half.

Consideration will be given first to case 1 of Table 1
which corresponds to a square cavity (E = 2) with
initial water temperature T, = 10°C and wall tempera-
ture maintained continuously at T, = 0°C, this case
providing rather typical and interesting results. The

P. Vasseur and L. ROBILLARD

Prandtl number Pr is taken to be 11.6, corresponding
to the average temperature 5°C. The computed results
for the mean temperature 8, the center point tem-
perature 8¢, the maximum temperature 0,,,,, the heat
transfer ¢, ¢ and ¢, related to the top, lower and
lateral boundaries respectively are shown in Fig. | as
functions of the dimensionless time . The correspond-
ing curves for pure conduction have been also included
in this graph for comparison purpose. In the case of
pure conduction the heat transfer is the same for all the
boundaries and is denoted by ¢*, all other variables
with the superscript (*) also referring to the pure
conduction. Itis noted that the mean temperature 8, i
proportional to the heat in excess of 8, remaining in
the cavity at time 7. Its slope is directly related to the
heat transfer at the boundaries by the following
expression:

a0 :
E—* = —[Ed + ¢y + 0]
o1

(¢

{16}

The difference between the pure conduction curve 9%
and the actual 8, curve is proportional to the ad-
ditional heat transfer through the boundaries, attri-
buted exclusively to convection that has occurred from
the initiation of the cooling process to the time
considered. It is seen that, due to the fluid circulation
inside the cavity, the upper and lower boundary heat
transfers ¢ and ¢y take values quite different from
that of the pure conduction heat transfer ¢*. It is also
noticed that the heat transfer ¢, on the vertical wall is
less affected by convection and consequently follows

ot v s P o e e e
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Fic. 1. Transient distributions for 8¢, Oy, O max O, ¢r and ¢ with results from pure conduction for case 1.
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more closely the pure conduction heat transfer curve
and stays approximately at a mean value between ¢
and ¢p.

Typical sets of the resulting streamlines and iso-
therms corresponding to different times 7 are shown in
Fig. 2. The maximum and minimum values of the
stream function and the contour intervals AP for each
graph are given in Table 2. It should be noted that for
this type of problem, the boundaries of the cavity
always correspond to the T, isotherm. Figure 3 gives

T

T 1 T

l

1199

(a) the velocity profiles U, along the horizontal
centerline passing through X, = 0.5, (b) the velocity
profiles U, along a vertical centerline located at the
position X, = 0.5 and (c) the transient temperature
profiles along the horizontal centerline already men-
tioned. The symbols A, B, C, etc. shown in Figs. 1 and 3
correspond to the sequence of the transient streamline
patterns and isotherms of Fig. 2. Those figures may
thus be contrasted with each other to gain some insight
into the flow and temperature fields.

(c)

71 1 1T 1

T T 1T 1 1

FiG. 2(a—d).
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(h)

T=0.110

T =0.201

Fi6. 2(e—h).
FI16. 2. Transient streamline pattern and isotherms for case 1.

At the very beginning of the cooling process, heat
transfer is dominated by conduction. A motion of the
boundary layer type is first set up near the walls, this
movement gradually extending inside the cavity. At
the end of what might be called an initial regime, that
is, approximately at point A in Figs. 1 and 3 (t ~ 0.01),
motion has become important over the entire cavity.
Two counter rotating vortices are then present in the
whole enclosure, as it can be deduced from Fig. 2a

which only shows the right clockwise vortex. It is seen
on Fig. 3c that the temperature profile A still reveals
thermal boundary layer characteristics whereas the
velocity profile (curve A of Fig. 3a) shows an important
gradient near the side boundary, this gradient being a
remnant of the initial boundary layer already men-
tioned. It results from the motion shown on Fig. 2a
that the cooler water is transported downward while
the warmer water in the core region is transported
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Table 2. Maximum and minimum values of stream functions and
maximum dimensionless temperatures for cases 1 and 2

Fig. No. T ¥, P e AY Bonn
2a 001 27.00 -002 270 1.00
2b 003 21.00 —090 300 0.99
2 006 8.90 ~920 180 0.86
2d 007 6.90 —540 120 0.80
2 009 300 —740 104 0.70
f 0.11 025 —840 086 0.64
% 0.13 0.00 —920 092 0.59
2h 0.20 0.00 —640 064 0.35
4a 005 37.00 —850 450 099
4b 0.10 1800  ~1700 350 087
4c 0.15 900  —2100 300 0.73
4d 030 000  —1300 130 0.40

F16. 3. Transient velocity profiles (a, b) and temperature profiles (c) for case 1.
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upward. Thus, as shown in Fig. 2b a large part of the
body of water has become thermally stratified with the
isotherms sparsely spaced near the bottom wall and
closely spaced near the top one. This configuration
indicates qualitatively that the local heat transfer is
higher at the top wall than at the bottom one.
Quantitatively the values of these local wall heat fluxes
are given on Fig. 1 by the curves ¢4, ¢ and ¢, at
location B. At this stage of the cooling process it is of
interest to go back to the isotherm field shown in the
left half on Fig. 2a. It is noted that at the bottom of the
cavity, in the layer of fluid included between the 4°C
isotherm and the 0°C bottom boundary, the buoyancy
force changes sign and the flow field is potentially
unstable because of the top-heavy situation similar to
the well-known case with heating from below [34].
Thus, the intensity of flow near the bottom remains
rather weak until the vertical density gradient becomes
sufficiently large. This unstable layer then grows and
an additional pair of vortices rotating opposite to the
existing earlier one appears, marking the beginning of
the inversion process. The resulting flow pattern is
depicted on Fig. 2b.

With the progression of the cooling process, the
lower vortex appearing on the right half of Fig. 2b
gradually increases its intensity and displaces the
upper vortex {see sketches ¢, d, e and { of Fig. 2). The
cooler water Jocated near the vertical wall and between
the two counter rotating vortices is carried directly
into the core region and disturbs locally the flow field
as it can be observed by the distortion of the isotherms
{see for instance curve E, Fig. 3c). Furthermore, due to
the combined action of the counter-rotating vortices,
some of the warmer core water is carried downward in
the lower portion of the cavity. It results from this
motion that the heat transfer rate at the lower wall ¢p
improves subsequently as shown in Fig. 1. At the time
stept x 0.1, the curves ¢ and ¢ cross each other and
the heat transfer rate ¢, on the lower wall becomes
greater than ¢, and ¢,

At 7 = 0.110 Fig. 2f shows that the original clock-
wise vortex has almost completely been engulfed by
the already strong vortex grown from below. The
original clockwise circulation is completely reversed in
Fig. 2g indicating that the flow field inversion process
has come to an end. In Fig. 2h it is seen that the
relatively warm core has moved in the lower region
and that the stratification of the water is now charac-
terized by weak gradients at the top of the cavity and
strong gradients at the bottom. Thus the temperature
field also shows characteristics opposite to its earlier
stages (see Fig. 2b). It is of interest to note that the
vortex motion at the beginning (Fig. 2a)and at the end
of the cooling process (Fig. 2h) although opposite in
direction are similar in character (see also Fig. 3a and
b). Results obtained for higher values of t (not
presented here) show that the momentum of the eddy
motion is slowly dissipated by the opposing viscous
forces and that the fluid motion becomes more and
more minute.
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In addition to the two most significant vortices
already discussed, some other eddies of very small
intensity are also present in the corners of the half
cavity (see Fig. 2d). It is true that the existence of
artificial corner cells, caused by numerical compu-
tation, has been reported in the past in literature 8]
However, the size of the grid mesh used in the present
computation has been chosen in order to avoid this
problem.

The effect of the cavity size b on the flow pattern and
the heat transfer has been studied numerically (cases i,
4 and 6 of Table 1). The numerical values obtained are
not reported graphically here but the general trend of
these results will be discussed. It was found that for
fixed values of T, and T, an increase of the physical
parameter gh?/u® (which corresponds to an increase of
the cavity size b) strengthens the convection of the
flow, and consequently the overall heat transfer, ar the
early stages of the cooling process. Thus with 5
increasing, the heat transfer curves ¢ and ¢y move
away from the pure conduction heat transfer curve ¢*
It is also observed that when gb® /3% is increased, the
difference (8% — ;) becomes more important. ¥ur
thermore it is observed that the crossing of the two
curves ¢, and ¢y, which is a consequence of the
inversion of the circulation inside the cavity. vccurs
earlier. For the largest value gh'/x’ used in the
computation {case 4), the curve ¢ is characterized by
a sudden increase that occurs shortly after the in-
itiation of the cooling process and that lasts for a
relatively short period of time. This bump of the curve
¢ 7 has the tendency to develop into a sharp peak when
the value of gb*/a? is further increased. Such behavior
may be explained in the following way. At the very
beginning of the cooling process, only conduction is
present and the curves ¢, ¢, and ¢, originate from
the same values. When fluid motion develops. those
curves separate one from the other, heat being trans-
ported toward the top boundary through the action of
gravity forces,. If fluid motion is strong enough, warmer
fluid may take the place of cooler fluid in the vicinity of
the top boundary. For such situations this means that
the cooling by conduction becomes a slower process
than the supply of heat by convection. In these
conditions the heat transfer may increase drastically
through a given boundary. A similar effect has been
observed for the lower boundary heat transfer ¢, when
the temperature range is between 4 and 0°C

The influence of the aspect ratic £ on the present
problem has been studied in cavities with E = 4and E
= 6 {cases 2 and 7, of Table 1). Figure 4 presents the
flow patterns and isotherms for the case E = 6. 1t is
noticed that the general features remain similar to
those of the square cavity (E = 2j. However 1t was
observed from numerical results. not presented here,
that when E is increased the inversion process requires
a longer period of time to be accomplished. The
growing and the spreading of the counter clockwise
vortex in the entire cavity appears to be a slower
process than in the case of a square cavity.



_______________

|

e
i

S
e

— )},

e s e e T

—

—~—




CONCLUSIONS

The results obtained in the present study can be
summarized as follows:

1. Convective heat transfer is greatly influenced by
the presence of density maximum in the convective
fluid.

2. When the temperature corresponding to the
maximum density is between T; and T,, the flow
pattern and temperature field which start in a way
comparable to linear free convection tend to a final
state which corresponds to a completely reversed
situation in all aspects.

3. By comparison to equivalent situations in the
linear range of temperature, it can be deduced that the
change in rotation affecting the convective cells retards
the cooling process of the cavity.
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Transient natural convection heat transfer

CONVECTION THERMIQUE NATURELLE VARIABLE DANS UNE MASSE
D’EAU REFROIDIE AUTOUR DE 4°C

Résnmé—On ¢étudie théoriquement la convection naturelle laminaire, bidimensionnelle, variable pour l'eau
confinée dans une cavité rectangulaire, avec une paroi maintenue a 0°C. Cette étude est menée de fagon a
étudier l'inversion des configurations d’écoulement causée par le maximum de densité 4 4°C. Des solutions
numeériques sont obtenues pour différents rapports d’allongement et différentes températures initiales d’eau
entre 4°C et 21°C.

Les solutions des équations aux dérivées partielles sont obtenues en utilisant la méthode implicite aux
différences finies avec direction alternée. Les résultats sont présentés graphiquement sous la forme de lignes
de courant et de lignes isothermes. Le transfert thermique est évalué sur chaque paroi pour étudier l'influence
de I'inversion sur le processus de transfert. Il est ¢tabli numériquement que P'effet est de changer le transfert

maximal de la paroi supérieure de la cavité, vers la paroi inférieure.

WARMEUBERTRAGUNG DURCH FREIE KONVEKTION IN EINER UNTER
4°C ABGEKUHLTEN WASSERMASSE

Zusammenfassung—Die instationire, zweidimensionale, laminare freie Konvektion von Wasser, das in
rechteckigen Hohlrdumen mit auf 0°C gehaltenen Wandtemperaturen eingeschlossen ist, wird analytisch
untersucht. Diese Arbeit wird durchgefithrt, um die Inversion der Stromungsverliufe, die vom Dichtemaxi-
mum des Wassers bei 4°C herriihrt, zu untersuchen. Es werden numerische Ldsungen fiir Fille, die
verschiedene Seitenverhilltnisse und zwischen 4°C und 21°C variierende Wasseranfangstemperaturen
umfassen, erhalten. Die Losungen des beschreibenden gekoppelten Systems von partiellen Differentialglei-
chungen werden erhalten, indem eine richtungs-alternierende, implizite, endliche Differenzenmethode
benutzt wird. Die Ergebnisse sind grafisch in Stromfunktions- und Isothermen-Kurvenscharen dargestellt.
Die Wirmetibertragung durch jede Wand wird bestimmt, um den EinfluB der Dichteinversion auf den
Abkiihlvorgang zu untersuchen. Es wird numerisch untermauert, daBl eine der Konsequenzen der
Nichtlinearitdt von Wasser die ist, daB sich das Maximum der Wirmelibertragung von der oberen
Behilterwand zu der unteren verlagert.

TEIUJIONEPEHOC TNMPH HECTALIUOHAPHOY ECTECTBEHHOHM KOHBEKLINM
B OBBEME BO/bl, OXJAXJIEHHOW HUWXE 4°C

AHHOTAURS — AHATHTHHYECKH HCC/ENOBANIACh HECTAUMOHADHAS JABYMEPHAs JaMHHapHAs €CTCCTBEHHas
xOHBexuMs B 06beMax BOABI, MOMELICHHBIX B NPAMOYIOABHBIC 3aMKHYTHIC MOJIOCTH C TeMAEpaTypoi
crenok, pasuoit 0°C. Henpio HeeneROBaHHUS ABARNOCH M3Y4EHHE CTPYKTYP TEYEHHSA, BHI3BAHHBIX MAKCH-
MajibHOM MIOTHOCTBIO BoAbl npH 4°C. [TonydeHbl YHCNICGHHDBIE PEIEHHA JUIA PA3JIMYHBIX OTHOLUCHHIH
CTOPOH NOJIOCTEH H HavyalIbHBIX TEMIIEPATYP BoAbl B auanasoHe ot 4°C go 21°C.

C nomMouibl0 KOHEYHO-PAa3HOCTHOIO HESBHOTO METOJa NEPEMEHHBIX HampaBleHHH [10JyYeHBI
peuieHHs cHCTeMBl THQvpepeHIHanbHbIX YPaBHEHUI B YACTHBIX MPOM3BOAHLIX. Pesyabrartsl npen-
CTaBfeHHl B rpaguyeckom Buue. JlaHa OLEHKA BEIMYHHBI TENJIOBOTO NOTOKA Hepe3 KakAyl CTeHKY
C HENBIC ONpPEHC/CHHS BIAMAHHA WHBEDCHHM TIOTHOCTH HA NPOHECC OXJAXIcHHA. B pesyabrate
HHCICHHBIX PAaciCTOB YCTAHOBJICHO, YTO H3-32 HEIHHEHHOCTH BOAB IPOMCXOIUT CMEILCHAE MAKCHMYyMa

Tena000MeHa ¢ BepXHeH CTEHKH NOJAOCTH K HMKHEH.
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